

Actualización en modificación de placa

Nieves Gonzalo Hospital Clínico San Carlos

Diamond-tipped burr

Protective Sheath

OCT in calcified lesions

Serious MACE (CD, TV-MI, ST)

OCT in calcified lesions

TVF Stratified by Enrollment Cohort

How can OCT support PCI in calcified lesions?.

Calcium evaluation

Plaque modification

Sizing and Optimization

Calcium evaluation with OCT

Pattern

Nodular and not nodular calcium Quantification:

Lenght

Arc

Thickness

Location (Depth)

Calcium evaluation

Pattern

Calcium evaluation

Plaque modification

Optimization

Selection

Effect

Uncrossable lesion

Atherectomy

Laser

- Ca are Trov
- Ca thickness <0.5mm
- Ca length

- CU UIC / FOC
- Ca thickness >0.5mm
- Ca length

Nodular calcium

Crossable lesion

- CU UIC / FOC
- Ca thickness >0.5mm
- Ca length

Lesion location
Response to balloon
Extension of the calcification
Depth of the calcium
Different patterns
Vessel size
Vessel tortuosity
Multivessel disease
Experience

DIAMONDBACK 360™ CORONARY OAS

Coronary OAS components

DIAMONDBACK 360™ CORONARY OAS

Orbital Atherectomy Device (OAD)

Images on file at Abbott.

DIAMONDBACK 360™ CORONARY OAS OUS PROCEDURE AND TECHNIQUE

Crown motion

Keep the crown moving

when orbiting, keep the crown advancing and retracting

Target 1 to 3 mm/sec

traverse speed (do not to exceed 10 mm/sec)

Maintain 1:1 motion

between crown and crown advancer knob

During procedure, watch the angiogram to verify that the crown is moving as expected.

Images courtesy of Dr. Nirat Beohar, MD. Results may vary.

A temporary pacing lead may be necessary when treating lesions in the right coronary and circumflex arteries due to the possible occurrence of electrophysiological alternations.

Orbital atherectomy

Multivessel disease (one size crown)

Unfavourable wire bias (ostial LCX, backwards atherectomy)

Diffuse long lesion with change in vessel-lumen size

Final result after TAP

Study Design

Key Entry Criteria:

- CCS, NSTEACS or stabilized post-STEMI
- De novo lesion with severe calcium
 - Via angiogram: opacities w/o cardiac motion involving both sides of wall w/total Ca⁺⁺ ≥15 mm and extending into the target lesion, or
 - Via IVUS/OCT: ≥270° Ca⁺⁺
 in ≥1 cross section
 - Equipoise regarding strategies (i.e. either no absolute requirement for or contraindication to atherectomy)

~2000 pts with severely calcified lesions; up to 150 US sites Randomized after wire **Orbital Atherectomy Conventional Angioplasty** crossing **Lesion Preparation Strategy Lesion Preparation Strategy** 1:1 (1.25 mm Classic Crown followed by (conventional and/or specialty balloons balloon pre-dilatation) per operator discretion) 2nd generation DES implantation and 2nd generation DES implantation optimization and optimization 1° endpoints: 1) Post-PCI in-stent MSA by OCT (N=~500 in imaging sub-study) 2) 1-year TVF (all subjects) 2° endpoints: 1) Procedural Success (stent deployed w/RS≤20% & no major complications) 2) Strategy Success (procedural success w/out crossover)

Patients with severely calcified lesions were enrolled by physician determination according to a pre-specified definition, with postprocedure calcium severity confirmed by an independent Core Lab

Funded by Abbott; ECLIPSE ClinicalTrials.gov number NCT03108456

Genereux P, et al. Am Heart J. 2022:249:1-11.

*62% of imaging use in the total cohort

Primary Imaging Endpoint (OCT Cohort)

Minimal stent area at maximum calcium site

Primary Clinical Endpoint Target Vessel Failure at 1 Year

ECLIPSE

- Lesions needed to be amenable for balloon treatment. Severely calcified lesions in whom the operator thought atherectomy was required were excluded.
- Only 4.9% of lesions randomized to balloon crossed over (vs 12.5% in ROTAXUS and 16% in PREPARE-CALC)
- Meticulous plaque preparation and 62% imaging use in the total cohort.
- Low TVF rates
- Results in terms of MSA much better than expected in balloon arms.

TVF Stratified by Enrollment Cohort

Mensajes

La OCT puede mejorar el tratamiento de las lesiones calcificadas permitiendo una adecuada evaluación del calcio, ayudando en la selección de la técnica de modificación de placa y optimizando el resultado de la implantación del stent

Existen actualmente diversas técnicas de modificación de placa. La elección de cada una depende de diversos factores y debe individualizarse en función de las características del paciente.

Muchas gracias